
CODE
QUEST

5.0

Kunal’s dilemma

presents

COMPUTER SOCIETY OF INDIA (CSI)
COEP TECH STUDENT CHAPTER

COMPUTER SOCIETY OF INDIA (CSI)
COEP TECH STUDENT CHAPTER

EDITIORIAL

EXPLANATION

The problem requires Kunal to allocate his avail-
able time fractionally across multiple slots to
meet the required work quotas for both ASCI
and CSI on a given day. The goal is to determine
whether he can successfully distribute his time to
satisfy the daily requirements.

1. Sorting Slots by Efficiency:
 - Each time slot has two productivity values: (
A_i) (ASCI work) and (C_i) (CSI work).
 - To optimize time allocation, we compute the
efficiency ratio (Ai/Ci) (if (C_i != 0), otherwise
consider it as infinitely large).
 - We then sort the slots in descending order of
this efficiency ratio, prioritizing slots where ASCI
work is more efficient.

2. Prefix Sums for Efficient Lookups:
 - We maintain a prefix sum array (C[]),
where (C[i]) stores the cumulative ASCI work if
all time from the first (i) slots is dedicated to
ASCI.
 - We also maintain a suffix sum array (E[]),
where (E[i]) stores the cumulative CSI work if
all remaining time from slot (i) onward is dedi-
cated to CSI.

3. Checking Daily Requirements Efficiently:
 - For each day, given required ASCI work (A_-
total) and CSI work (C_total):
 - We find the smallest prefix index (i) where
(C[i] >= A_total). This tells us how many slots
are needed to satisfy the ASCI work require-
ment.

EXPLANATION

EXPLANATION

- We then compute how much time fractionally
remains for CSI work.
 - If the total achievable CSI work (from par-
tial and remaining slots) is enough, the answer
for that day is 'P' (Possible), otherwise 'N' (Not
possible).

4. Efficiency Considerations:
 - Sorting the slots takes (O(S log S)).
 - Building prefix and suffix sums takes (O(S)).
 - Checking for each day's requirement is done
in (O(log S)) using binary search.
 - This ensures the approach efficiently handles
large constraints.

EXAMPLE

Input:
1
1 3
3 2
4 1
2 3
5 5

Explanation of input:
- 1 test case
- 1 day and 3 slots
- Slots:
 - Slot 1: (3 ASCI, 2 CSI)
 - Slot 2: (4 ASCI, 1 CSI)
 - Slot 3: (2 ASCI, 3 CSI)
- Required work on Day 1: 5 ASCI, 5 CSI

Step 1: Compute Efficiency and Sort
- Compute efficiency ratios:
 - Slot 1: (3/2 = 1.5)
 - Slot 2: (4/1 = 4.0) (Highest, prioritize ASCI)
 - Slot 3: (2/3 approx 0.67) (Least efficient
for ASCI)
- Sort in decreasing order:
 - Slot 2: (4 ASCI, 1 CSI)
 - Slot 1: (3 ASCI, 2 CSI)
 - Slot 3: (2 ASCI, 3 CSI)

 Step 2: Compute Prefix and Suffix Arrays
- Prefix sum for ASCI:
 - C[0] = 4
 - C[1] = 4 + 3 = 7
 - C[2] = 7 + 2 = 9
- Suffix sum for CSI:
 - E[2] = 3
 - E[1] = 2 + 3 = 5
 - E[0] = 1 + 5 = 6

EXAMPLE

EXAMPLE

Step 3: Check Requirements
- Need 5 ASCI and 5 CSI
- Find ASCI requirement:
 - (C[0] = 4) (insufficient)
 - (C[1] = 7) (sufficient, so need up to slot 1)
- Compute fractional usage:
 - Need extra 1 ASCI from slot 2.
 - Slot 2: (1/3) of time spent on ASCI � Leaves
(2/3) for CSI.
 - (2/3 times 2 = 1.33) CSI from slot 2.
 - Total CSI: (1.33 + 5 = 6.33) (Enough!)
- Result: 'P'

 Final Output:

P

SOLUTION

