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EXPLANATION

The problem requires Kunal to allocate his avail-
able time fractionally across multiple slots to 
meet the required work quotas for both ASCI 
and CSI on a given day. The goal is to determine 
whether he can successfully distribute his time to 
satisfy the daily requirements.

1. Sorting Slots by Efficiency:  
   - Each time slot has two productivity values: ( 
A_i ) (ASCI work) and ( C_i ) (CSI work).
   - To optimize time allocation, we compute the 
efficiency ratio ( Ai/Ci ) (if ( C_i != 0 ), otherwise 
consider it as infinitely large).
   - We then sort the slots in descending order of 
this efficiency ratio, prioritizing slots where ASCI 
work is more efficient.

  



2. Prefix Sums for Efficient Lookups:  
   - We maintain a prefix sum array ( C[] ), 
where ( C[i] ) stores the cumulative ASCI work if 
all time from the first ( i ) slots is dedicated to 
ASCI.
   - We also maintain a suffix sum array ( E[] ), 
where ( E[i] ) stores the cumulative CSI work if 
all remaining time from slot ( i ) onward is dedi-
cated to CSI.

3. Checking Daily Requirements Efficiently:  
   - For each day, given required ASCI work ( A_-
total ) and CSI work ( C_total ):
     - We find the smallest prefix index ( i ) where 
( C[i] >= A_total ). This tells us how many slots 
are needed to satisfy the ASCI work require-
ment.
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EXPLANATION

- We then compute how much time fractionally 
remains for CSI work.
     - If the total achievable CSI work (from par-
tial and remaining slots) is enough, the answer 
for that day is 'P' (Possible), otherwise 'N' (Not 
possible).

4. Efficiency Considerations:  
   - Sorting the slots takes ( O(S log S) ).
   - Building prefix and suffix sums takes ( O(S) ).
   - Checking for each day's requirement is done 
in ( O(log S) ) using binary search.
   - This ensures the approach efficiently handles 
large constraints.



EXAMPLE

Input:
1
1 3
3 2
4 1
2 3
5 5

Explanation of input:
- 1 test case
- 1 day and 3 slots
- Slots:
  - Slot 1: (3 ASCI, 2 CSI)
  - Slot 2: (4 ASCI, 1 CSI)
  - Slot 3: (2 ASCI, 3 CSI)
- Required work on Day 1: 5 ASCI, 5 CSI



Step 1: Compute Efficiency and Sort
- Compute efficiency ratios:
  - Slot 1: ( 3/2 = 1.5 )
  - Slot 2: ( 4/1 = 4.0 ) (Highest, prioritize ASCI)
  - Slot 3: ( 2/3 approx 0.67 ) (Least efficient 
for ASCI)
- Sort in decreasing order:
  - Slot 2: (4 ASCI, 1 CSI)
  - Slot 1: (3 ASCI, 2 CSI)
  - Slot 3: (2 ASCI, 3 CSI)

 Step 2: Compute Prefix and Suffix Arrays
- Prefix sum for ASCI:
  - C[0] = 4
  - C[1] = 4 + 3 = 7
  - C[2] = 7 + 2 = 9
- Suffix sum for CSI:
  - E[2] = 3
  - E[1] = 2 + 3 = 5
  - E[0] = 1 + 5 = 6
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EXAMPLE

Step 3: Check Requirements
- Need 5 ASCI and 5 CSI
- Find ASCI requirement:  
  - ( C[0] = 4 ) (insufficient)  
  - ( C[1] = 7 ) (sufficient, so need up to slot 1)  
- Compute fractional usage:  
  - Need extra 1 ASCI from slot 2.
  - Slot 2: ( 1/3 ) of time spent on ASCI � Leaves 
( 2/3 ) for CSI.
  - ( 2/3 times 2 = 1.33 ) CSI from slot 2.
  - Total CSI: ( 1.33 + 5 = 6.33 ) (Enough!)
- Result: 'P'

 Final Output:

P



SOLUTION


