“ S\ COMPUTER SOCIETY OF INDIA (CSI) £4%®
W&’y COEPTECH STUDENT CHAPTER \4

PRESENTS

CODE
QUEST
2.0

\ EDITIORIAL

EQUAL PIZZA PACT




EXPLANTION

The problem requires us to divide the given N
pizza slices into exactly D equal portions by
making the minimum number of radial cuts.
Each slice already has a given angle, and we can
cut it further to achieve uniformity. The chal-
lenge is to determine the best strategy to mini-
mize the number of cuts while ensuring that ex-
actly D equal slices are obtained.

STEPS:
1. Sorting the slices:

- We first sort the given N pizza slices based
on their internal angles. This helps in efficiently
trying to redistribute slices by making cuts in a

; B
systematic way.

2. lterating through possible target slice sizes:
- We assume that the final equal slice size
should be some factor of an existing slice size.

- We iterate through potential slice sizes (de-
noted as m) based on existing slice values to
check if we can split other slices to match this
target.



EXPLANTION

3. Checking divisibility and making cuts:

- For each potential target size, we check how
many cuts are needed to divide the slices ac-
cordingly. i

- If a slice's angle can be evenly divided into
the target size, we determine how many com-
plete slices can be formed and count the cuts re-
quired. |

- If a slice cannot be divided exactly, we ap-
proximate the best division possible while ensur-
ing that D slices are created.

4. Tracking the minimum cuts:

- Across all possible equal slice sizes, we track
the minimum number of cuts required to create
exactly D slices.

- The approach ensures that we always mini-
mize unnecessary extra cuts while maintaining
the required count of slices.



EXPLANTION

Example Walkthrough:

Input |

1 i

34 '
180000000000 90000000000 90000000000
- 1 test case

- 3 slices: 180 x 10° nanodegrees, 90 * 10° nano-
degrees, 90 x 10° nanodegrees -

- 4 friends need equal slices

Step 1: Sorting Slices -
The given angles are already sorted:

[90 x 10°, 90 x 10°, 180 x 10°]

Step 2: Trying Possible Slice Sizes
- Since we need 4 equal slices, we check what
size each slice should ideally be.
- Possible candidates for the final slice size are:
- 90 % 10° nanodegrees
- 45 x 10° nanodegrees



EXPLANTION

Step 3: Dividing Slices
- If we take 90 % 10’ as the target slice size:

- The first two slices are already 90 % 10°, so
they don’t need cuts. |

- The last slice (180 % 10°) can be split into two
90 x 10” slices with 1 cut. :

- Total slices now: 4 (matches required
number).

- Cuts required: 1. .

- If we take 45 x 10° as the target slice size:

- The first two slices (90 x 10°) need to be split
into two each (1 cut per slice X 2 cuts total).

- The last slice (180 x 10°) need:s to be split into
four 45 % 10° slices (3 cuts).

- Total slices now: 4 (matches required
number).

- Cuts required: 3.

Step 4: Choosing the Minimum Cuts

Among all tested slice sizes, the minimum
number of cuts required is 1 cut when we choose
90 x 10° as the final equal slice size.



EXPLANTION

Output
1

This means that the minimum pumber of cuts
required to create 4 equal slices is 1.



SOLUTION

b il
.

1 import java.util.*;
public class PizzaCuts {
public static void main{String[] args) {

Scanner scanner = new Scanner(System.in);

int testCases = scanner.nextInt(); // Read the number of test cases

while (testCases-- > 8) {
int numSlices = scanner.nextInt(): // Number of slices in the pizza
int numFriends = scanner.nextInt(); // Number of friends who need egqual slices
long[] sliceAngles = new long[numSlices];
ff Read the slice angles
for (int i = 8; i < numSlices; i++) {

sliceangles[i] = scanner.nextLong();

ff Sort =lice angles For systematic processing
Arrays.sort(sliceAngles);
int minCuts = numFriends - 1; // Worst case: splitting each slice individually
Iterate over sach slice and attempt to form equal slices
for (int 4 = 8; i ¢ numSlices; i++) {
for (int factor = 1; factor <= numFriends; factor++) { // Try different multiples
long totalSlices = 8, exactSlices = 8;
int excessslices = @;
ff Calculate the number of slices that can be obtained
for (int k = 8; k < numSlices; k++) {
totalslices += (sliceAngles[k] * factor) / sliceAngles[i];
{f Count exact matches (where no Ieftover is created)
if ((sliceAngles[k] * factor) % sliceAngles[i] == B BE exactSlices < numFriends) {
excesssSlices++;
exacts5lices += (sliceAngles[k] * factor) f sliceangles[i];

}

/{ If total slices are less than required, skip this case

if (totalslices < numFriends) continue;

ff If we have extra slices, reduce excess count

if (exact5lices » numFriends) excessSlices--;
f Update the minimum number of cuts reguired

minCuts = Math.min{minCuts, numFriends - excessSlices);

JoPrint the minimum cuts needed
System.out.println{minCuts);
1

scanner.close();




