PRESENTS

CODE
QUEST
2.0

EDITIORIAL

THE GREAT DIVIDE
COEP

COEP TECH STUDENT CHAPTER {4/

PROBLEM
STATEMENT

At COEP Tech, the Data Structures and Algorithms
(DSA) exam is notorious for pushing students to
their intellectual limits. The stakes are high, and
the pressure in the air is palpable. This year, the
exam is scheduled to take place in the prestigious
Cognizant Lab, a state-of-the-art facility -
equipped with rows of high-performance PGs, The
exam is rumored to be especially tough this time,
with whispers of complex recursive problems and
elusive graph algorithms floating around the
campus. |

With the intensity of the challenge, some students
might feel tempted to stray from the path of hon-
esty and resort to "collaborative problem-solving"
during the test. The vigilant professors have taken
it upon themselves to prevent any such breach of
integrity. They devised a cunning plan: ensure
that no two students can sit close enough to even
exchange glances, let alone whisper answers to
each other.

PROBLEM
STATEMENT

The Cognizant Lab has N + 2 PCs in a single row.
The PCs at both ends are reserved for the invigila-
tors, leaving N PCs in the middle for the students.
These invigilators, like unyielding sentinels, ensure
that the students feel the watchful gaze of author-
ity. ‘

When students enter thelab, they are assigned a
PC following a strict set of rules :

1. Maximum Distance Rule : Each student tries to
sit as far as possible f_r.nm-the nearest occupied
PC. BN\

2. Tie-Breaker Rule : If there are multiple PCs with
the same minimum distance from the nearest oc-
cupied PC, the student chooses the one with the
greatest maximum distance to an occupied PC.

3. Leftmost Rule : If there is still a tie, the student
chooses the leftmost PC among the remaining op-
tions.

PROBLEM
STATEMENT

As students file into the lab one by one, their

choices are dictated by these rules, ensuring that
the spacing remains optimal t; deter any unfair
practices. :

The professor now wonders: after K students have
taken their seats, what will the seating situation
look like for the Kth student, the last one to enter
the lab?

Specifically:

What is the maximunt distance to the nearest oc-
cupied PC (maxD). fn:.the Kth student?

What is the minimum distance to the nearest occu-
pied PC (minD) for the Kth student?

The invigilators need this information to evaluate
how effectively the seating arrangement minimiz-
es opportunities for unfair means.

PROBLEM
STATEMENT

For each empty PC (S), they compute two values,
(LC) and (RC), where: |

- LC is the number of empty P('..s between (S) and
the closest occupied PC to the left.

- RC is the number of empty PCs between (S) and
the closest occupied PC to the right. ‘

They then consider the set of PCs with the farthest
closest neighbor, meaning the PCs for which
min(LC, RC) is maximal. If there is only one such
PC, they choose it. Otherwise, among those PCs,
they select the nna.u:here- max(LC, RC) is maximal.

Finally, the maxD is defined as max(LC, RC), and
the minD is defined as min(LC, RC).

Your task is to solve for maxD and minD for all test
cases!

PROBLEM
STATEMENT

Suppose the Cognizant Lab setup is as follows:

AT
N = 4 PCs available for students (with 6 PCs

total, including the 2 reserved for II'WIgI'EItDFS)
K = 3 students entering.

Following the seating rules:

1. The first student takes the middlemost PC for
maximum distance. .

2. The second st_l._.ldent takes the next farthest
PC, ensuring maxifium spacing.

3. The third student’s seat is determined by the
rules, and their maxD and minD values are cal-
culated.

Your task is to solve for maxD nnd-mInD for all
test cases!

INPUT FORMAT

The first line of the input giyes the number of
test cases, T. T lines follow. E-qch' line describes
a test case with two integers N (the number of
available PCs for students) and K (the number
of students entering the lab).

OUTPUT
FORMAT &
CONSTRAINTS

For each test case, output one line containing:
"maxD minD".

SOLUTION

#include <bits/stdc++.h>
using namespace std;

map=long long, long long= ans;

long long cnt{long long n, long long m) {
if (n <m)
return 0;
if (ans[n] !'= @)
return ans[n];
long long a = (n + 1) / 2 - 1;
long long b =n / 23
return ans[n) = cnt{a, m) + cnt(b, m) + 1;

}

int main{) {
int t;
cin »=» t3
while (t--) {
long long n, k;
cin == n == K;

long long 1 = 0, r = n;
while {1 < r) {
long long mid = (L + r + 1) f 73
ans.clear();
Lf (cntin, mid) = K)
r=mid - 1;
else
1 = mid;

}

cout =< (1L / ?) =< " ' << ({1l + 1) / 2 - 1) << endl:
}

return 03

